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A numerical study of the transition from steady to oscillatory streamwise-oriented
vortices in fully developed rotating channel flow is presented. The principal results
are obtained from three-dimensional, spectral simulations of the incompressible
time-dependent Navier—Stokes equations. With increasing Reynolds number, two
transitions that cause the steady, periodic array of two-dimensional vortices (roll
cells) to develop waves travelling in the streamwise direction are discovered. The
linear stability of two-dimensional vortices to wavy perturbations is examined.
Associated with the two transitions are two different wavy vortex flows: WVF1 and
WVF2. WVF2 is very similar to undulating vortex flow found in curved channel flow
simulations (Finlay, Keller & Ferziger 1988) and to wavy Taylor vortex flow. WVF2
is only possible at low rotation rates. In contrast, the dissimilar WVF1 occurs for all
rotation rates examined, has shorter streamwise wavelength and, for sufficiently high
Reynolds number, has much higher linear growth rate than WVF2. For low rotation
rates, WVF1 is similar to curved channel flow twisting vortices, but at higher
rotation rates appears dissimilar. Several key qualitative features are discussed that
suffice in describing all these wavy vortex flows.

1. Introduction

At sufficiently small Reynolds number, Re, the velocity in infinite-span rotating
channel flow is purely streamwise. At higher Re, secondary flow containing two-
dimensional, streamwise-oriented vortices (roll cells) can develop, owing to an
imbalance of Coriolis and pressure forces. At still higher Re, these vortices can
develop waves travelling in the streamwise direction. In this work, the linear
stability of periodic two-dimensional vortices to travelling waves is examined. Three-
dimensional, nonlinear wavy vortices resulting from this instability are examined
using numerical simulations of the Navier-Stokes equations. A better understandiang
of the transitions leading to turbulence in rotating channel flow may yield a better
understanding of the physics of transition in general and in other geometries such as
coolant flow in turbine blades, flow inside impellers of centrifugal pumps, and
geophysical flows such as in deep sea basins partitioned by submarine ridges.

The flow geometry is shown in figure 1. The channel spacing is d. Throughout this
work, velocities will be non-dimensionalized by the bulk velocity (i.e. the average
mean streamwise velocity) U and lengths will be non-dimesionalized by d. The
Reynolds number is Re = Ud/v. The coordinate system is aligned such that (z,y, 2)
are streamwise, normal, and spanwise directions respectively, with the channel
centreline defined as y = 0. The rotation number is Ro = Qd/U, where 2 is the
dimensional angular speed of rotation about the z-axis. A non-dimensional spanwise
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Fieure 1. Schematic drawing of rotating channel flow. The flow is periodic in z.

Ro Re, o,
0.084 146.6941 4.16
0.1 136.3972 4.19
0.5 88.5994 491
1.5 183.0970 8.13

TaBLE 1. The critical Reynolds number, Re,, and wavenumber, a,, for instability of rotating
plane Poiseuille low to two-dimensional vortices are given for the rotation rates, Ro, used herein.

wavenumber is @ = 2nd/A, where A is the spanwise vortex spacing. Rotating channel
flow experiments have finite aspect ratio I = h/d, where h is the spanwise dimension
of the channel.

For infinite-span channels and low Re, the streamwise velocity profile is the same as
plane Poiseuille flow, but there is a normal pressure gradient when Ro # 0. This flow
will be called rotating plane Poiseuille flow, and is inviscidly unstable to two-
dimensional vortices when 0 < Ro < 3 (cf. Tritton & Davies 1985). For given a and
Ro, linear neutral stability analysis predicts the neutrally stable Reynolds number
Re,, above which two-dimensional vortices have positive linear growth rates. For
given Ro, the minimum of the neutral stability curve Re (a) occurs at the critical
Reynolds number Re_ and the critical wavenumber a,. One-dimensional flow occurs
for Re < Re,; two-dimensional vortices can occur for Re > Re,. Previous authors (cf.
Tritton & Davies 1985 for a literature review, and also Alfredsson & Persson 1989)
have found Re_, Re, and a, for various Ro; Re, is finite only in the range 0 < Ro < 3,
with the minimum occurring at Re, = 88.6, Ro = 0.5. Table 1 gives Re_ and «, for the
Ro considered here. Also assuming spanwise periodicity, Finlay (1989) examines a
perturbation expansion for two-dimensional vortices in curved or rotating channels
and truncates this expansion to provide a Stuart—Watson weakly nonlinear analysis
of two-dimensional vortices that is accurate near the neutral stability curve (see also
Ng et al. 1989). The Re-dependence implied by the full perturbation expansion is
compared with two-dimensional, fully nonlinear vortices obtained by the same
numerical method used here.

Above Re = 7696, rotating plane Poiseuille flow becomes linearly unstable to
Tollmien—Schlichting waves, but in this work Re is well below this value or even
that needed for subcritical transitions of plane Poiseuille flow.

For large but finite aspect ratio, rotating plane Poiseuille flow is modified by
single end vortices located near z = +1I". Roll cells occur in the interior for Re, Ro
nearly within the range predicted by infinite-span linear stability analysis (Hart



Transition to oscillatory motion in rotating channel flow 211

1971; Lezius & Johnston 1976; Speziale & Thangam 1983; Alfredsson & Persson
1989). Alredsson & Persson (1989) provide experimental roll-cell spacings in a
channel with I" = 60. Flows with end vortices, I' = 8, and with or without interior
vortices have been studied numerically by Speziale & Thangam (1983); Thangam &
Speziale (1985) consider heating of the y = +1 wall. Speziale (1982) examines
numerical solutions for I' = 2, and finds the two-cell flow can change to a four-cell
flow for moderate Ro and high Re. Kuz’'minskii, Smirnov & Yurkin (1983), and
Smirnov & Yurkin (1983) provide experimental results on the number of cells
occurring in rectangular channels with 1" < 7.2. Khesgi & Scriven (1985) examine a
two—four cell bifurcation for I' = 1 using continuation methods, finding hysteresis.
They also examine geostrophic flow without vortices, which occurs for Ro > 1,
Re € Ro. Thangam & Speziale (1987) study non-Newtonian secondary flows for a
square rotating duct. All theoretical papers cited in this paragraph assume that the
flow is independent of streamwise coordinate, i.e. the flow is two-dimensional.
Smirnov & Yurkin (1983), Smirnov et al. (1983) mention regular oscillations of
vortices in square and rectangular channels, which cause the flow to depend on
streamwise position. For I' =60, Alfredsson & Persson (1989) provide flow
visualizations which indicate periodic waves travelling on the roll cells. They suggest
these are wavy vortices like those occurring in curved channel flow (Finlay, Keller
& Ferziger 1988). Wavy vortices have also been observed by Yang & Kim (1990).
Wavy vortex flows have been studied in Taylor—Couette flow (cf. DiPrima &
Swinney 1985), Rayleigh-Bénard convection (where they are called oscillatory
convection rolls, cf. Busse 1985), and curved channel flow (Finlay ef al. 1988).
Experimental observations suggest that such flows may occur in rotating channel
flow also. In this work, the transition from two-dimensional vortices to wavy
rotating channel vortices is examined in §3. Details of nonlinear wavy vortices are
given in §4. Rotation and Reynolds numbers in the range 0.084 < Ro < 1.5 and
Re < 600 are considered. The numerical method used to obtain these results is briefly
described in §2. Spanwise and streamwise periodicity is imposed, preventing
examination of finite-span features. In addition, the flow is assumed fully developed;
that is, streamwise development or entrance length effects are not considered here.

2. Code implementation

Using the numerical method of Moser, Moin & Leonard (1983), we obtain three-
dimensional time-dependent solutions of the incompressible Navier-Stokes equations
for a rotating channel. Periodic boundary conditions are used in the spanwise and
streamwise directions. A pseudo-spectral method based on expansion functions that
satisfy the continuity equation and the boundary conditions is used. Time-
advancement is implicit (Crank—Nicholson) for viscous terms and explicit (second-
order Adams—Bashforth) for nonlinear and Coriolis terms. Effects of centrifugal force
are absorbed in the hydrostatic pressure. The code is a modification of the one used
to study wavy Taylor vortices by Moser ef al. (1983), wavy Dean vortices by Finlay
et al. (1988), weakly nonlinear two-dimensional curved or rotating channel vortices
by Finlay (1989), and to perform a direct simulation of turbulence in the curved
channel (Moser & Moin 1984, 1987).

The solution progresses in time with constant mass flux imposed. To eliminate
aliasing errors, the nonlinear terms are evaluated in real space on a grid with % as
many grid points in each direction as the number of modes used in transform space
(cf. Canuto et al. 1988).



212 W. H. Finlay

3. Linear stability of two-dimensional vortices to wavy perturbations

We examine the linear stability of two-dimensional vortices to wavy disturbances
by writing the velocity as

v(x,y,2,1) = u(y,t) e Wb 4 92D(y 2), (3.1)

where v?P(y, z) represents a fully developed, two-dimensional vortex flow obtained
using the code. The physical velocity field is the real part of (3.1). The complex
temporal growth rate, o —iw, allows oscillatory growth or decay. The parameter £ is
a given real-valued streamwise wavenumber. Disturbances with spanwise period
different to that of v*® are not considered. Equation (3.1) implies that the wavy
disturbance travels in the streamwise direction with speed

c=w/p. (3.2)

At given a and Ro, there is an Re above which v®® with only one pair of vortices
per period cannot be obtained because of vortex doubling (Khesgi & Scriven 1985
examine a similar result for a square channel). Similar behaviour occurs for Dean
vortices (Finlay ef al. 1988) and Taylor vortices (e.g. Meyer-Spasche & Keller 1985).
The Re-range examined in this section extends near to this vortex doubling limit.
Ligrani & Niver (1988) observe spanwise splitting (with subsequent merging) of
vortices in curved channel flow. Figure 6 of Alfredsson & Persson (1989) probably
indicates that vortex splitting occurs in rotating channel flow as well. Such results
may be associated with the stability of two-dimensional vortices to disturbances with
different spanwise wavenumber (for example, Eckhaus instability), and are not
examined here.

For given (Re,a,Ro,f) we examine the stability of wavy perturbations by
substituting (3.1) into the Navier—Stokes equations. We could linearize the resulting
partial differential equations and study the eigenvalue problem, but instead choose
to use the three-dimensional nonlinear code. We choose the streamwise length of the
computational region to be 2m/B. The initial conditions have e'¥* streamwise
variation, are divergence free, and are a low-amplitude (< 0.01%U) wavy
perturbation from v?P (given in Finlay et al. 1987). The solution progresses in time
until e“* time dependence is found. The first streamwise Fourier mode of this
solution is the desired eigensolution. We use 19 spanwise Fourier modes, 7
streamwise Fourier modes, and Chebyshev polynomials up to order 32 in the normal
direction. Observations of spatial energy spectra showed this resolution is sufficient.

Two-dimensional vortices have reflection symmetry about their upflow and
downflow planes, i.e. the (wx,y)-planes where v, =0 (Finlay 1989). A wavy
perturbation is called ‘in phase’ if it satisfies the same reflection symmetry property.
an out-of-phase mode has reflection symmetry about planes shifted by 1A from the
downflow and upflow planes. In general, a wavy perturbation is neither in phase nor
out of phase, but is a linear combination of these two types of modes. Dean vortices,
Taylor vortices (for radius ratio # > 0.5 and a stationary outer cylinder), and
Rayleigh—Bénard convection rolls (for moderate Prandtl number) are linearly stable
to in-phase wavy disturbances (Finlay ef al. 1988; Davey, DiPrima & Stuart 1968
Jones 1981, 1985; Bolton, Busse & Clever 1986). Thus, instability is determined by
disturbances which are out of phase. For the Re,«, 8, Ro considered, all small-
amplitude growing disturbances of the form (3.1) are out of phase in rotating channel
flow as well. Fully developed, nonlinear, three-dimensional rotating channel vortices
are neither in phase nor out of phase.
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Fieure 2. Linear growth rates, o, of wavy disturbances to two-dimensional vortices are shown as
a function of streamwise wavenumber, £, at Ro = 1.5, & = 10 and Re as follows: (0, ——, Re =
1.529Re,; O, ————, Re = 2.021Re; A, —'—, Re = 2.512Re,; +, + -+ "" , Re = 3.277Re,.

Lines are included only to guide the eye.
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F1gURE 3. Wave speeds, ¢, of small-amplitude wavy disturbances to two-dimensional vortices
are shown as a function of streamwise wavenumber, §, at Ro = 1.5, a = 10 and Re as follows:
O, —, Re = 1.520Re,; O, ————, Re = 2.021Re ; A\, ——, Re =2.512Re; +, *+---" " ,
Re = 3.277Re,,

Figure 2 gives o(f) for several Re at Ro = 1.5,a = 10. By interpolation, two-
dimensional vortices are first unstable (with increasing Re) to wavy disturbances at
Re = Re, = 2.7Re, and f ~ 1.5. At a = 8, o(f) behaves similarly except that Re,, ~
2Re, is lower. In contrast, for wavy Taylor vortices with # > 0.75 (Jones 1981, 1985),
curved channel undulating vortices (Finlay ef al. 1988), and oscillatory Ray-
leigh-Bénard convection rolls with stress free boundaries (Busse 1972), instability
occurs first at the smallest # geometrically possible (8 =1/r, for the curved
geometries where 7, is the centreline radius of curvature, and g = 0 for convection).
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FicURE 4. Linear growth rate, o, of wavy disturbances are shown as a function of £ < 0.6 for
Ro=05, a=8, and Re as follows: [], ——, Re=1354Re;; O, —— ——, Re = 1.693Re,;
A, ——, Re=2032Re_; +, -+~ , Re = 2.596Re,.

Oscillatory instability of Rayleigh—Benard convection rolls with the more realistic
rigid boundaries (Clever & Busse 1974), and the transition to twisting vortices in
curved channel flow (Finlay ef al. 1988) first occur at # considerably higher than the
smallest.

Figure 3 gives ¢(f) at the same Ro, , Re as figure 2; w = ¢/ is approximately linear
in #. The wave speed, ¢, varies non-monotonically with Re. At o =8, ¢(f) is
qualitatively similar.

When Ro is lowered to Ro = 0.5, and « = 6, o(8) is similar to that at Ro = 1.5,
except Re, . ~ 3.0Re,. We choose o = 6 because it is near that observed experi-
mentally by Alfredsson & Persson (1989) for this Ro.

For the a, Re, Ro considered so far in this section, ¢ approaches zero as >0, and
Re; is determined by £ ~ 1.5. For small 8, positive values of ¢ occur only when Re
is considerably greater than Re,,. In contrast, at Ro=0.5 and a =8, wavy
disturbances with f— 0 are the first to become unstable with increasing Re. Figure
4 gives o(f) for several Re at a = 8, Ro = 0.5. Although £ — 0 is first unstable, modes
with £ > 0 have larger positive growth rates for higher Re. Figure 5 shows o(f) for
a larger range of 8. The disturbance with largest positive growth rate shifts to much
higher # when Re increases above a certain value. For some Re, there are two local
maxima in o(f#). To the author’s knowledge, this behaviour is not observed for
oscillatory Rayleigh-Benard convection or Taylor-Couette flow with only the inner
cylinder rotating, but does occur in curved channel flow (Finlay et al. 1988). It should
be noted that the method we use to obtain o yields only the largest eigenvalue. In
fact, preliminary data obtained by solving the eigenvalue problem directly with a
spectral tau method show that the two local maxima correspond to two different
eigenmodes, each having a o(#)-curve similar to an inverted parabola. When only the
maximum o between the two modes is plotted, two maxima can occur. The two
maxima are well separated and we define £, and S, as the positions of the maxima
with higher and lower g, respectively; both depend on Re,a, Ro. As shown in the
following section, the wavy vortex flows corresponding to the two ranges of § are
dissimilar. We use the abbreviations WVF1 and WVF2 to describe wavy vortices
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Fieure 5. Linear growth rate, o, of wavy disturbances are shown as a function of g for Ro = 0.5,
a =28, and Re as follows: [0, ——, Re = 1.354Re,; O, ————, Re=2.032Re_; A, — —,
Re = 2.596Re_; +, +--:--- , Re = 3.160Re,; X, —-—, Re =4.515Re,.

with f near f#, and f,, respectively. With increasing Re, two-dimensional vortices first
become unstable to WVF2 always for #—> 0, whereas instability to WVF1 occurs first
for f not near zero; this differences distinguishes the two modes. For Ro = 0.5,
a = 8, and increasing Re, WVF2 occurs first for f#— 0 at Re = Re,; & 1.5Re,; WVF1
first occurs for Re,, & 2.0Re, and f =~ 1.0. Finlay et al. (1988) used the terms ‘ twisting’
and ‘undulating’ Dean vortices to mean #, and f,, respectively, in curved channel
flow at 9 = 0.975. Here, ‘undulating’ vortex flow will be used to mean WVF2,
because of the similarity to undulating Dean vortices flow (see §4). WVF1 is similar
to twisting Dean vortex flow for some Ro but different at others, so ‘twisting
vortices’ will not be used here to mean WVF1. For the Re shown in figure 5, a(4,)
increases monotonically with increasing Re. In contrast, o(f,) increases from zero at
Rej, to a maximum at some Re and then decreases with further increases in Re. We
define Re, as the Reynolds number at which o(8,) = o(f#,). By interpolation,
Rey = 2.2Re, for « = 8, Ro = 0.5; Re,,, Re; and Re,g are functions of Ro and «. For
example, at Ro = 1.5, Rey_ increases between o = 8 and 10, but at Ro = 0.5, Re,
decreases between a = 6 and 8. If both modes become unstable with increasing Re,
then, for the parameter range explored, Re, < Re,, i.e. WVF2 occurs first with
increasing Re. For Re sufficiently greater than Reg, o(8,) > a(f,).

The behaviour of the non-dimensional wave speed, c, as a function of # and Re for
a = 8, Ro = 0.5 is given in figure 6. An abrupt change in ¢(f#) occurs between the two
modes. The wave speed is asymptotic to a constant for large f in the range
considered, which is also true for twisting vortices in curved channel flow (Finlay
etal. 1988). At Ro = 0.5, cis a relatively weak function of Re, as in curved channel flow
(Finlay et al. 1988) and Taylor-Couette, flow (King et al. 1984). Wave speeds for
WVF1 with & = 6, Re = 3.160Re,, Ro = 0.5 are included in figure 6 to show the small
variation with «, especially for # > 0.5. For undulating vortices, w(f) is linear for
small B, and w—0 as f—>0, as in Rayleigh-Bénard convection with stress free
boundaries (Busse 1972).

At Ro = 0.5, only WVF1 has positive linear growth rates when o = 6, but both
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FiaurEe 6. Wave speeds, ¢, of small-amplitude wavy disturbances to two-dimensional vortices are
shown as a function of streamwise wavenumber, 8, at Ro = 0.5, « = 8 and Re as follows: [,

Re=1693Re,; O, ————, Re=2.032Re.; A, —-— Re=2596Re,; +, -~ )
Re = 3.160Re,; x, ———, Re =4.515Re,. Data for @ = 6, Re = 3.160Re,, Ro = 0.5 is shown as
o, . Data for WVF1 is to the lower right, and is not joined by lines to the data for WVF2 at

the upper left, even though Re may be the same.
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FicUREe 7. Linear growth rates, o, of wavy disturbances are shown as a function of § for Ro = 0.1,

a =06, and Re as follows: ],
Re = 4.032Re,.

, Re =1.173Re,; O, ————, Re =2.053Re,; A\, ——,

modes can be unstable at « = 8. Reducing the rotation rate to Ro = 0.1 with « = 6,
again both modes can be unstable. Figure 7 gives o(f) for several Re at a =5,
Ro = 0.1. Marginal stability to wavy disturbances is determined by §— 0, but modes
with f# > 0 are more unstable for Re > Re;,. By interpolation, undulating vortices
may occur for Re > Re,, ~ 1.3Re,, and WVF1 for Re > Re,_  ~ 2.8Re,. The value of
maximum growth rate for undulating vortices, o(f,), does not reach a maximum in
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Fiaure 8. Wave speeds, ¢, of small-amplitude wavy disturbances to two-dimensional vortices are
shown as a function of streamwise wavenumber, 8, at Ro = 0.1, a = 6 and Re as follows: [], —,
Re=1.173Re,; O, ——-—~—, Re=2.053Re ; A, —-—, Re =4.032Re,. Data for WVF1 at
Re = 4.032Re_ is shown by the data to the right, and is not joined by lines to the data for WVF2
at the left.

the Re-range explored, in contrast to the behaviour for Ro = 0.5, « = 8 and for
undulating modes in curved channel flow (Finlay et al. 1988). At Ro = 0.1, 8, ~ 4 is
larger than g, at Ro = 0.5 or Ro = 1.5. Figure 7(b) of Alfredsson & Persson (1989)
shows flow visualization at Ro = 0.084, Re = 4.022Re, a = 6 that indicates wavy
vortices having § = 4. Since g =~ ff; > f,, this is probably WVF1.

Figure 8 gives ¢(/), corresponding to o(f) in figure 7. The comments regarding ¢ for
Ro = 0.5 are applicable here, except that the variation of ¢ with « was not examined
at this Ro, and ¢(Re) varies considerably more for undulating vortices at Ro = 0.1
(possibly because of the larger range of Ee). Wave speeds for Ro = 0.1 are mostly near
those for Ro= 0.5, but are considerably lower than at Ro = 1.5. When non-
dimensionalized by d%/v, instead of d/U, w for undulating vortices varies little with
Ro; the same is not true for WVF1. (A similar non-dimensionalization yields a
frequency nearly independent of Prandtl number, P, for oscillatory Rayleigh-Bénard
convection rolls with stress free boundaries, but strongly dependent on P for rigid
boundaries. There v is replaced by the thermal diffusivity, Busse 1985). Wave speeds
in curved channel and Taylor—Couette flow depend strongly on % (Finlay et al. 1988;
King et al. 1984). Similarly, ¢ depends on Ro.

Alfredsson & Persson (1989) almost certainly observed wavy vortices, with the
waves travelling at ‘about half of the undisturbed centreline velocity’ (¢ = 0.75).
They do not specify the parameters for this observation, although 0.015 < Ro < 0.26.
This ¢ is lower than most values in figures 6 and 8. However, we find considerable
variation of ¢ with the various parameters, so this observation may be for Ro, a, Re,
f not considered here.

Values of Re, /Re, and Re; /Re, are listed in table 2. Re; /Re, is nearly constant
between Ro = 0.1 and Ro =0.5 for & =6, and similarly between Ro = 0.5 and
Ro =15 for a = 8.

The value of § observed experimentally depends on upstream conditions, nonlinear
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Ro a Re,,/Re, Re /Re,
0.1 6 1.3 2.8
0.5 6 Non-existent 3.0
0.5 8 1.5 2.0
1.5 8 Non-existent 2.0
1.5 10 Non-existent 2.7

TaBLE 2. Values of the neutrally stable Reynolds number for onset of WVF1 (Re,)) and WVF2
(Re;,) are given at various Ro and «

mechanisms and linear growth rates. If the latter are dominant then, for Ro = 1.5
and o = 8,10, or Ro = 0.5 and « = 6, only the shorter wavelength WVF1 occurs,
since undulating vortices do not have positive linear growth rates. At Ro = 0.5,
a = 8 or Ro = 0.1, a = 6, long wavelength undulating vortex flow can occur, but at
higher Re, WVF1 has much higher linear growth rate. The small linear growth rates
asgociated with undulating vortices probably make them difficult to observe
experimentally because of long development lengths, as predicted for undulating
vortices in curved channel flow (Finlay et al. 1988). As already mentioned, Alfredsson
& Persson (1989) probably observed WVF1. At fixed Re = 4.022Re_, and sufficiently
low Ro this is the only type of waviness they observe. With increasing Ro, they
observe long-wavelength wavy fluctuations. These are probably not undulating
vortices, since this section indicates that these should become more difficult to
observe at higher Ro.

4. Simulation of nonlinear wavy vortices

In this section we examine fully developed, three-dimensional solutions of the
Navier—Stokes equations for Re > Re,  or Re > Re, . Channels with short streamwise
lengths may not reach these states. Unless otherwise specified, all flows presented in
this section have £ near either 8, or g, (i.e. near the most unstable £ of §3), and « near
that observed by Alfredsson & Persson (1989). Most of the wavy vortices in this
section were obtained using the initial conditions mentioned in §3, but with the
initial perturbation to the first streamwise mode having larger amplitude (< 1% U).
Several runs were repeated using instead low-amplitude ( < 0.001 % U) random noise
as initial conditions. Both initial conditions always yielded the same wavy vortex
solution.

4.1. General features

Fully developed wavy vortices are travelling waves in which the flow pattern travels
with uniform velocity c. This is similar to the behaviour of wavy Taylor vortex flow,
wavy Dean vortex flow, and oscillatory Rayleigh-Bénard convection rolls.
Specifically, the velocity satisfies the spatio-temporal property of a travelling wave
(Rand 1982):

v((z+cAt)ymod 2n/B, y, 2, t+ At) = v(z, y, 2, 1). (4.1)

Setting At = 0 in (4.1) implies streamwise periodicity with wavenumber £; setting
At = 2n/(cf) shows that the travelling wave has temporal periodicity with frequency
w = ¢f. Values of w for several nonlinear wavy rotating channel vortices are given in
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Ro Re/Re, a ) Mode w Ap Ap (2D flow)
0.084  4.022 6 40  WVFI (twisting)  4.35  0.46462
0.084 4.022 8 4.0 WVF1 (twisting) 4.3 0.59598 0.44976
0.1 2.053 6 0.8~ WVF2 (undulating) 1.00 023185 0.24185
0.5 1.693 8 0.2  WVF2(undulating) 0.26  0.15998 0.223 86
0.5 2.596 8 1.5 WVF1 1.30 0.24598 0.2732
0.5 3.160 6 1.5 WVEF1 1.38  0.23126 0.206 68
0.5 3.612 6 1.5 WVF1 1.31 0.2809
1.5 3.277 10 1.5 WVF1 0.9 0.11306 0.091043
1.5 2.348 8 1.5 WVF1 1.0 0.069217

TaBLE 3. Frequencies, w (obtained using temporal spectra), and values of Ap from simulation
are given for nonlinear wavy vortices. Values of Ap are also given for two-dimensional vortices
(# = 0) at each Ro, Re, a, except when the two-dimensional vortices are unstable to vortex doubling

table 3. These values are all within 7% of those obtained for small-amplitude waves
in §3.

\§Ve simulate temporal power spectra obtained by a probe that moves at constant
velocity, c,, in the streamwise direction. In agreement with (4.1), such ‘flying hot
wire’ spectra have  shifted by fc,; the results show that all frequencies with non-
zero energy are integer multiples of the shifted fundamental frequency. This
demonstrates that wavy rotating channel vortices are travelling waves. Fully
developed two-dimensional vortices in rotating channel flow can bifurcate to two
different travelling wave regimes with increasing Re.

Wavy vortices may have shift-and-reflect symmetry (Marcus 1984):

vy(x,y,2,t) = v (x+ /By, —2,1),
v(r,y,2,t) =v (x+n/B,y, —2,t), (4.2)
v,(x,y,2,8) = —v,(x+n/0,y, —2,1),

where z =0 is the time-averaged location of an upflow or downflow boundary.
Although this symmetry was not enforced, all wavy vortices in rotating channel flow
satisfy (4.2). Preliminary runs at higher Re than presented here indicate that
asymmetric flows can occur in the transitions leading to chaos.

Spatial energy spectra for wavy rotating channel vortices decay exponentially
with increasing Fourier wavenumber k, or k, (cf. Finlay 1989 for more on this for
two-dimensional vortices). This behaviour occurs for wavy Taylor vortices (Marcus
1984), wavy Dean vortices (Finlay et al. 1988) and oscillatory Rayleigh-Bénard
convection rolls (Curry et al. 1984). The adequacy of our spatial resolution is
monitored by observing whether such exponential behaviour occurs up to the
maximum wavenumber resolved (19 x 33 x 19 modes in , y, z are used for all runs in
this section). ,

Between vortices the flow is directed mostly toward positive or negative y, i.e.
these are upflow or downflow regions. The upflow region has higher |v,| than the
downflow region. For rotating Poiseuille flow, the lower wall at y =—} has
higher pressure and the flow near it (y < 0) is inviscidly unstable ; the opposite is true
of the upper wall. Larger |v,| thus occurs in the upflow regions where flow is away
from the higher pressure, inviscidly unstable wall. Similarly, for curved channel
vortices, radial velocities are highest in the regions with radially inward flow (inflow)
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away from the higher pressure, inviscidly unstable outer wall (Finlay ef al. 1988). In
contrast, Taylor vortices have strongest radial flow towards the higher pressure outer
wall (Marcus 1984).

A measure of the strength of the vortices is the pressure gradient parameter Ap,

defined as
__(op oP\/opP
r=(2-5)5 («3)

where 9p/0zx is the streamwise pressure gradient, 0p/0x is the value of dp/dx averaged
over the computational box, and 0P/0x is the streamwise pressure gradient for
Poiseuille fiow. The quantity Ap plays a role similar to that of the Nusselt number
in Rayleigh—Bénard convection, and the non-dimensional torque in Taylor-Couette
flow. Values of Ap for several nonlinear wavy vortex flows and corresponding two-
dimensional vortices are given in table 3. For the two cases of undulating vortices Ap
is lower than for (unstable) two-dimensional vortices at the same Re, a, Ro. This is
similar to wavy Taylor vortices and undulating Dean vortices, which have lower
torque and Ap, respectively, than the corresponding axisymmetric vortex flow. In
contrast, all but one of the WVF1 (x = 8, Re = 2.596Re,, f = 1.5, Ro = 0.5) have
higher Ap than the corresponding unstable two-dimensional vortex flow. Twisting
Dean vortices also cause Ap to be higher.

By their absence or presence, the following few qualitative features capture the
essential temporal and streamwise variation of wavy vortex flows (because the flows
are due to fully developed travelling waves, temporal and streamwise variation are
equivalent). If significant variations in vortex strength occur, one vortex is strongest
when the other is weakest. The vortices may oscillate back and forth in the spanwise
direction ; this will be referred to as sideslipping. Independent of this motion, vortex
rocking will be said to occur if the line (in a (y,z)-plane) joining two vortex centres
across an upflow region oscillates from positive to negative slope. Finally, the upflow
and downflow regions may have significant and varying v,, causing directional
changes of the upflow and downflow regions.

Rocking, sideslipping and directional changes in the upflow region are observed to
occur together in the following patterns. For all wavy vortices, large sideslipping
motion occurs only in the direction opposite to the spanwise velocities in the upflow
region. Wavy vortices having large maximum sideslip (> 0.3A), and directional
changes of the upflow region that are approximately in phase with rocking (i.e. in a
(¥, 2)-plane, the upflow region is approximately perpendicular to the line joining two
vortex centres), with no other outstanding features, will be called undulating
vortices. All WVF2 are undulating vortices. No WVF1 is an undulating vortex flow.
For these reasons, WVF2 and undulating vortex flow will be used synonymously.
Wavy vortices that sideslip only a little (< 0.1A), but have the latter property of
undulating vortices, and no other outstanding features, will be called twisting
vortices. All wavy vortices observed by Finlay et al. (1988) in curved channel flow
were undulating or twisting (for curved channel flow, ‘upflow’ is replaced by
‘inflow’). For WVF1, vortex rocking is characterized by two features: (1) if one
vortex in a pair is considerably stronger than the other, then the weak vortex moves
rapidly to the y = —1 wall soon after it is weakest; (2) significant motion of a vortex
centre toward the y = +} wall occurs at locations other than where the vortex is
weakest,.

With these features in mind, we now examine some wavy vortex velocity fields.
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Fraure 9. WVFI1 (twisting vortices) at Ro = 0.084, Re = 4.022Re_, o = 6, § = 4 is projected onto
(y,2)-planes for x = (2r/6) (i/10), 1 =0,1,2,...,5. All six plots have axes as given in the ¢ = 4 plot.
Plots for 6 < ¢ < 10 are a reflection about z = 0 of the plot at i—35.

4.2. Wavy vortices for small Ro

Shown in figure 9 are arrow plots of the cross-flow velocities for fully developed
WVF1 with Ro = 0.084, Re = 4.022Re,, a = 6, f§ = 4. These are approximately the
same Ro, Re, a, £ as figure 7 (b) of Alfredsson & Persson (1989). The plots represent the
cross-flow velocities for a sequence of (y,z2)-planes. The streamwise flow is
perpendicular to and into the plane of the plots. Only half a streamwise wavelength
is shown, since the other half of the sequence is obtained from the shift-and-reflect
property (4.2). All vector plots herein are drawn with the average spanwise location
of the upflow region as midplane. For visual clarity, not all grid-point velocities are
shown. Since the flow is a travelling wave, figure 9 is equivalent to a temporal
sequence of the cross-flow velocities at one streamwise location. This flow has the
features of twisting vortices and bears remarkable resemblance to twisting Dean
vortices shown in figure 16 of Finlay et al. (1988). (The outer curved channel wall
corresponds to the y = —3 wall here, so each plot must be turned upside down to
match figure 16 there.) Using a =8 at the same Re,Ro,f yields a flow that is
qualitatively unchanged from figure 9. The flow observed by Alfredsson & Persson
(1989) at this Re, Ro is probably a WVF1 having the qualitative features of twisting
vortices mentioned in §4.1.

Arrow plots of the cross-flow velocities for undulating vortices with Ro = 0.1,
Re = 2.053Re,, a = 6, # = 0.8 are shown in figure 10. For the same reasons as figure 9,
only half a streamwise wavelength is shown. This flow is very similar to undulating
Dean vortices (figure 15 of Finlay ef al. 1988), and wavy Taylor vortices (figure 6 of
Marcus 1984); all share the qualitative features mentioned previously for undulating
vortices.
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Figure 10. WVF2 (undulating vortices) at Ro
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Fieurk 11. WVF1 at Ro
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Ficure 12. WVF1 at Ro = 0.5, Re = 2.596Re_, a = 8, f = 1.5 is projected onto (y, z)-planes.
See the caption of figure 9 for more explanation.

4.3. Wavy vortices at Ro = 0.5

At Ro = 0.5 and o = 6, §3 indicates that undulating vortices are not possible. WVF1
with Re = 3.160Re_, § = 1.5 at this &, Ro is shown in figure 11. (Arrows of the same
length in figures 9, 10 and 11 have non-dimensional velocity magnitudes of the same
value.) The directional changes of velocity in the upflow region are considerably
smaller than for any other wavy vortices examined so far. The vortices rock with
little sideslipping, like twisting vortex flow, but the directional changes in the upflow
jet lag considerably behind the rocking, so the term ‘twisting vortices’ cannot be
applied as defined previously.

WVF1 with a = 8, Re = 2.596Re,, and the same Ro, § as figure 11, is shown in
figure 12. This e is higher than observed at this Ro by Alfredsson & Persson (1989).
Figure 12 shows the only WVF1 found with large sideslipping. Large sideslipping in
conjunction with directional changes of the upflow region that are in phase with
vortex rocking would make this flow like undulating vortices; however, one of the
vortices disappears once per period, which is unlike undulating vortex flow, or any
other wavy vortex flow. This flow is also the only WVF1 which has lower Ap than
the corresponding two-dimensional vortex flow.

At Ro = 0.5, undulating vortices are possible at @ = 8, although this « is greater
than any a observed by Alfredsson & Persson (1989). For a = 8, Ro = 0.5, and
Re = 1.693Re,, f = 0.2, vortex rocking is less pronounced than other undulating
vortices, but the flow is similar to that in figure 10.
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Figure 13. WVF1 at Ro = 1.5, Re = 2.348Re,, o = 8, f = 1.5 is projected onto (y,z)-planes.
See the caption of figure 9 for more explanation.

4.4. Wavy vortices at Ro =

At Ro = 1.5, §3 indicates only WVF1 is possible. Experimental data on vortex
spacing is unavailable at such a high rotation rate, so we choose o near «, = 8.13.
WVF1 with @ = 8, Re = 2.348Re_, f = 1.5, is shown in figure 13. There is little vortex
rocking, sideslipping, or variation in vortex strength. Unlike either the twisting or
undulating patterns, the changes of the v, velocities in the upflow region are 180° out
of phase with rocking and are very small.

Wavy vortices at the same Ro, , but & = 10, Re = 3.277Re, are shown in figure 14.
The flow is different again. Considerable vortex rocking occurs, with more sideslip
(maximum sideslip is & 0.4A) than twisting vortices. Unlike either twisting or
undulating patterns, significant phase difference exists between vortex rocking and
changes in upflow direction.

At Ro = 1.5 the vortices are located closer to the ¥ = —1 wall than at lower Ro.
Significant v,, v, velocities exist only for y < 0. For y > 0 the secondary flow is weak,
but quite complicated.

Wavy vortex flows examined at Ro = 1.5 resemble neither undulating nor twisting
vortices.
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FicURE 14. WVF1 at Ro = 1.5, Re = 3.277Re,, a = 10, # = 1.5 is projected onto (y, z)-planes.
See the caption of figure 9 for more explanation.

5. Summary

Three-dimensional simulations were used to study wavy vortices in rotating
channel flow. Linear stability of two-dimensional vortices to wavy disturbances
shows that two wavy modes are possible: WVF1 and WVF2. WVF1 occurs for all Ro
examined and for Re > Re, , where 2 < Re, /Re, < 3 for 0.1 < Ro < 1.5 (Re, is the
critical Re for instability of rotating plane Poiseuille flow to two-dimensional
vortices). Regular oscillations observed experimentally by Alfredsson & Persson
(1989) were likely due to WVF1. WVF2 is possible only at lower rotation rates and
Re > Re;,, where Reg,/Re, =~ 1.3-1.5. At Ro where both modes occur, WVF2 occurs
first with increasing Re, i.e. Re[, < Re,, but at sufficiently high Re, WVF1 has much
higher linear growth rate. Small-amplitude wavy disturbances have wave speeds
that are generally not weakly dependent on Re, «, # or Ro. Nonlinear wavy vortices
are travelling waves with wave speeds near those obtained from linear stability
analysis. WVF1 and WVF2 satisfy shift-and-reflect symmetry about their mean
upflow and downflow planes. Wavy vortices vary considerably in appearance with
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Ro and a, but can be characterized qualitatively by the following features: rocking,
sideslipping, and regular changes in the direction of upflow regions between vortices.
In these features, WVF1 varies greatly with Ro and «, but is like twisting Dean
vortex flow (Finlay ef al. 1988) for low Ro. In contrast, WVF2 varies far less in
qualitative appearance and has the features of undulating Dean vortices (Finlay
et al. 1988), and wavy Taylor vortices (Marcus 1984). Based on linear growth rates,
WVF1 should dominate experimentally.

The author gratefully acknowledges the CPU time supplied by Cray Canada Inc.
and the financial support of NSERC.
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