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A numerical study of the transition from steady to oscillatory streamwise-oriented 
vortices in fully developed rotating channel flow is presented. The principal results 
are obtained from three-dimensional, spectral simulations of the incompressible 
time-dependen t Navier-S tokes equations. With in creasing Reynolds number, two 
transitions that cause the steady, periodic array of two-dimensional vortices (roll 
cells) to  develop waves travelling in the streamwise direction are discovered. The 
linear stability of two-dimensional vortices to wavy perturbations is examined. 
Associated with the two transitions are two different wavy vortex flows : WVF1 and 
WVFZ. WVFZ is very similar to undulating vortex flow found in curved channel flow 
simulations (Finlay, Keller & Ferziger 1988) and to wavy Taylor vortex flow. WVF2 
is only possible at low rotation rates. In  contrast, the dissimilar WVFl occurs for all 
rotation rates examined, has shorter streamwise wavelength and, for sufficiently high 
Reynolds number, has much higher linear growth rate than WVFS. For low rotation 
rates, WVFl is similar to curved channel flow twisting vortices, but a t  higher 
rotation rates appears dissimilar. Several key qualitative features are discussed that 
suffice in describing all these wavy vortex flows. 

1. Introduction 
At sufficiently small Reynolds number, Re, the velocity in infinite-span rotating 

channel flow is purely streamwise. At higher Re, secondary flow containing two- 
dimensional, streamwise-oriented vortices (roll cells) can develop, owing to an 
imbalance of Coriolis and pressure forces. At still higher Re, these vortices can 
develop waves travelling in the streamwise direction. I n  this work, the linear 
stability of periodic two-dimensional vortices to travelling waves is examined. Three- 
dimensional, nonlinear wavy vortices resulting from this instability are examined 
using numerical simulations of the Navier-Stokes equations. A better understandirig 
of the transitions leading to turbulence in rotating channel flow may yield a better 
understanding of the physics of transition in general and in other geometries such as 
coolant flow in turbine blades, flow inside impellers of centrifugal pumps, and 
geophysical flows such as in deep sea basins partitioned by submarine ridges. 

The flow geometry is shown in figure 1. The channel spacing is d. Throughout this 
work, velocities will be non-dimensionalized by the bulk velocity (i.e. the average 
mean streamwise velocity) 0 and lengths will be non-dimesionalized by d.  The 
Reynolds number is Re = Ud/v.  The coordinate system is aligned such that (x, y, z) 
are streamwise, normal, and spanwise directions respectively, with the channel 
centreline defined as y = 0. The rotation number is Ro = Qd/O, where 52 is the 
dimensional angular speed of rotation about the z-axis. A non-dimensional spanwise 
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FIQURE 1 .  Schematic drawing of rotating channel flow. The flow is periodic in z. 

Ro Re, a, 
0.084 146.6941 4.16 
0.1 136.3972 4.19 
0.5 88.5994 4.91 
1.5 183.0970 8.13 

TABLE 1.  The critical Reynolds number, Re,, and wavenumber, a,, for instability of rotating 
plane Poiseuille flow to two-dimensional vortices are given for the rotation rates, Ro, used herein. 

wavenumber is a = 2nd/h, where h is the spanwise vortex spacing. Rotating channel 
flow experiments have finite aspect ratio r = h/d,  where h is the spanwise dimension 
of the channel, 

For infinite-span channels and low Re, the streamwise velocity profile is the same as 
plane Poiseuille flow, but there is a normal pressure gradient when Ro + 0. This flow 
will be called rotating plane Poiseuille flow, and is inviscidly unstable to two- 
dimensional vortices when 0 < Ro < 3 (cf. Tritton & Davies 1985). For given a: and 
Ro, linear neutral stability analysis predicts the neutrally stable Reynolds number 
Ren, above which two-dimensional vortices have positive linear growth rates. For 
given Ro, the minimum of the neutral stability curve Re,&) occurs a t  the critical 
Reynolds number Re, and the critical wavenumber a,. One-dimensional flow occurs 
for Re < Re,; two-dimensional vortices can occur for Re > Re,. Previous authors (cf. 
Tritton & Davies 1985 for a literature review, and also Alfredsson & Persson 1989) 
have found Re,,, Re,, and a, for various Ro; Re, is finite only in the range 0 < Ro < 3, 
with the minimum occurring a t  Re, = 88.6, Ro = 0.5. Table 1 gives Re, and a, for the 
Ro considered here. Also assuming spanwise periodicity, Finlay (1989) examines a 
perturbation expansion for two-dimensional vortices in curved or rotating channels 
and truncates this expansion to provide a Stuart-Watson weakly nonlinear analysis 
of two-dimensional vortices that is accurate near the neutral stability curve (see also 
Ng et al. 1989). The Re-dependence implied by the full perturbation expansion is 
compared with two-dimensional, fully nonlinear vortices obtained by the same 
numerical method used here. 

Above Re = 7696, rotating plane Poiseuille flow becomes linearly unstable to 
Tollmien-Schlichting waves, but in this work Re is well below this value or even 
that needed for subcritical transitions of plane Poiseuille flow. 

For large but finite aspect ratio, rotating plane Poiseuille flow is modified by 
single end vortices located near z = &$r. Roll cells occur in the interior for Re, Ro 
nearly within the range predicted by infinite-span linear stability analysis (Hart 
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1971; Lezius & Johnston 1976; Speziale & Thangam 1983; Alfredsson & Persson 
1989). Alredsson & Persson (1989) provide experimental roll-cell spacings in a 
channel with r = 60. Flows with end vortices, r = 8, and with or without interior 
vortices have been studied numerically by Speziale & Thangam (1983) ; Thangam & 
Speziale (1985) consider heating of the y = ++ wall. Speziale (1982) examines 
numerical solutions for r = 2, and finds the two-cell flow can change to a four-cell 
flow for moderate Ro and high Re. Kuz’minskii, Smirnov & Yurkin (1983), and 
Smirnov & Yurkin (1983) provide experimental results on the number of cells 
occurring in rectangular channels with r < 7.2. Khesgi & Scriven (1985) examine a 
two-four cell bifuroation for r = 1 using continuation methods, finding hysteresis. 
They also examine geostrophic flow without vortices, which occurs for Ro 9 1,  
Re Q Ro. Thangam & Speziale (1987) study non-Newtonian secondary flows for a 
square rotating duct. All theoretical papers cited in this paragraph assume that the 
flow is independent of streamwise coordinate, i.e. the flow is two-dimensional. 

Smirnov & Yurkin (1983)) Smirnov et al. (1983) mention regular oscillations of 
vortices in square and rectangular channels, which cause the flow to depend on 
streamwise position. For r = 60, Alfredsson & Persson (1989) provide flow 
visualizations which indicate periodic waves travelling on the roll cells. They suggest 
these are wavy vortices like those occurring in curved channel flow (Finlay, Keller 
& Ferziger 1988). Wavy vortices have also been observed by Yang & Kim (1990). 
Wavy vortex flows have been studied in Taylor-Couette flow (cf. DiPrima & 
Swinney 1985), Rayleigh-Be’nard convection (where they are called oscillatory 
convection rolls, cf. Busse 1985), and curved channel flow (Finlay eral. 1988). 
Experimental observations suggest that such flows may occur in rotating channel 
flow also. In  this work, the transition from two-dimensional vortices to wavy 
rotating channel vortices is examined in $3. Details of nonlinear wavy vortices are 
given in $4. Rotation and Reynolds numbers in the range 0.084 < Ro < 1.5 and 
Re < 600 are considered. The numerical method used to obtain these results is briefly 
described in $2. Spanwise and streamwise periodicity is imposed, preventing 
examination of finite-span features. In  addition, the flow is assumed fully developed ; 
that is, streamwise development or entrance length effects are not considered here. 

2. Code implementation 
Using the numerical method of Moser, Moin & Leonard (1983), we obtain three- 

dimensional time-dependent solutions of the incompressible Navier-Stokes equations 
for a rotating channel. Periodic boundary conditions are used in the spanwise and 
streamwise directions. A pseudo-spectral method based on expansion functions that 
satisfy the continuity equation and the boundary conditions is used. Time- 
advancement is implicit (Crank-Nicholson) for viscous terms and explicit (second- 
order Adams-Bashforth) for nonlinear and Coriolis terms. Effects of centrifugal force 
are absorbed in the hydrostatic pressure. The code is a modification of the one used 
to study wavy Taylor vortices by Moser et al. (1983), wavy Dean vortices by Finlay 
et al. (1988), weakly nonlinear two-dimensional curved or rotating channel vortices 
by Finlay (1989), and to perform a direct simulation of turbulence in the curved 
channel (Moser & Moin 1984, 1987). 

The solution progresses in time with constant mass flux imposed. To eliminate 
aliasing errors, the nonlinear terms are evaluated in real space on a grid with as 
many grid points in each direction as the number of modes used in transform space 
(cf. Canuto et al. 1988). 
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3. Linear stability of two-dimensional vortices to wavy perturbations 

by writing the velocity as 
We examine the linear stability of two-dimensional vortices to wavy disturbances 

v(z ,  y, z, t )  = u(y, t )  e('-'w)t eibz + ~ ~ ~ ( y ,  z ) ,  (3.1) 

where ~ ~ ~ ( y ,  z )  represents a fully developed, two-dimensional vortex flow obtained 
using the code. The physical velocity field is the real part of (3.1). The complex 
temporal growth rate, cr - iw, allows oscillatory growth or decay. The parameter p is 
a given real-valued streamwise wavenumber. Disturbances with spanwise period 
different to that of vZD are not considered. Equation (3.1) implies that the wavy 
disturbance travels in the streamwise direction with speed 

c = w / p .  (3.2) 

At given a and Ro, there is an Re above which v2D with only one pair of vortices 
per period cannot be obtained because of vortex doubling (Khesgi & Scriven 1985 
examine a similar result for a square channel). Similar behaviour occurs for Dean 
vortices (Finlay et al. 1988) and Taylor vortices (e.g. Meyer-Spasche & Keller 1985). 
The Re-range examined in this section extends near to this vortex doubling limit. 
Ligrani & Niver (1988) observe spanwise splitting (with subsequent merging) of 
vortices in curved channel flow. Figure 6 of Alfredsson & Persson (1989) probably 
indicates that vortex splitting occurs in rotating channel flow as well. Such results 
may be associated with the stability of two-dimensional vortices to disturbances with 
different spanwise wavenumber (for example, Eckhaus instability), and are not 
examined here. 

For given (Re,a,Ro,P) we examine the stability of wavy perturbations by 
substituting (3.1) into the Navier-Stokes equations. We could linearize the resulting 
partial differential equations and study the eigenvalue problem, but instead choose 
to use the three-dimensional nonlinear code. We choose the streamwise length of the 
computational region to be 2nlp. The initial conditions have eiBz streamwise 
variation, are divergence free, and are a low-amplitude (< 0.01 % wavy 
perturbation from vZD (given in Finlay et al. 1987). The solution progresses in time 
until e('-iw)t time dependence is found. The first streamwise Fourier mode of this 
solution is the desired eigensolution. We use 19 spanwise Fourier modes, 7 
streamwise Fourier modes, and Chebyshev polynomials up to order 32 in the normal 
direction. Observations of spatial energy spectra showed this resolution is sufficient. 

Two-dimensional vortices have reflection symmetry about their upflow and 
downflow planes, i.e. the (z,y)-planes where vz = 0 (Finlay 1989). A wavy 
perturbation is called 'in phase ' if it satisfies the same reflection symmetry property. 
an out-of-phase mode has reflection symmetry about planes shifted by $A from the 
downflow and upflow planes. In general, a wavy perturbation is neither in phase nor 
out of phase, but is a linear combination of these two types of modes. Dean vortices, 
Taylor vortices (for radius ratio 7 > 0.5 and a stationary outer cylinder), and 
Rayleigh-Be'nard convection rolls (for moderate Prandtl number) are linearly stable 
to in-phase wavy disturbances (Finlay et al. 1988; Davey, DiPrima & Stuart 1968; 
Jones 1981, 1985; Bolton, Busse & Clever 1986). Thus, instability is determined by 
disturbances which are out of phase. For the Re,a,p,Ro considered, all small- 
amplitude growing disturbances of the form (3.1) are out of phase in rotating channel 
flow as well. Fully developed, nonlinear, three-dimensional rotating channel vortices 
are neither in phase nor out of phase. 



Transition to oscillatory motion in rotating channel $ow 213 

0 1 2 3 4 

B 
FIGURE 2 .  Linear growth rates, v, of wavy disturbances to two-dimensional vortices are shown aa 
a function of streamwise wavenumber, /3, at Ro = 1.5, a = 10 and Re as follows: 0,  -, Re = 
1.529Rec; 0,  ----, Re = 2.021Rec; A, ---, Re = 2.512Rec; +, 1 . .  . . ' .  . , Re = 3.277Rec. 
Lines are included only to guide the eye. 
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FIGURE 3. Wave speeds, c ,  of small-amplitude wavy disturbances to two-dimensional vortices 
are shown as a function of streamwise wavenumber, /3, at Ro = 1.5, a = 10 and Re as follows: 
0,  -, Re = 1.529ReC; 0,  ----, Re = 2.021ReC; A, -.-, Re = 2.512Rec; +, ' .  . . . . ' ' ,  
Re = 3.277ReC. 

Figure 2 gives r(/3) for several Re a t  Ro = 1.5,a = 10. By interpolation, two- 
dimensional vortices are first unstable (with increasing Re) to wavy disturbances a t  
Re s Re;, z 2.7Rec and /3 w 1.5. At a = 8, a(P) behaves similarly except that Re;, w 
2Re, is lower. In  contrast, for wavy Taylor vortices with 7 > 0.75 (Jones 1981, 1985), 
curved channel undulating vortices (Finlay et al. 1988), and oscillatory Ray- 
leigh-BQnard convection rolls with stress free boundaries (Busse 1972), instability 
occurs first a t  the smallest /3 geometrically possible (/3 = l/rc for the curved 
geometries where rc is the centreline radius of curvature, and /3 = 0 for convection). 
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FIQURE 4. Linear growth rate, u, of wavy disturbances are shown as a function of p < 0.6 for 
Ro = 0.5,  a = 8,  and Re as follows: 0, __ , Re = 1.354ReC; 0, ----, Re = 1.693Re,; 
A,-.- ,  Re=2.032ReC; +, . . . - . ’ .  . , Re = 2.596ReC. 

Oscillatory instability of Rayleigh-Benard convection rolls with the more realistic 
rigid boundaries (Clever & Busse 1974), and the transition to twisting vortices in 
curved channel flow (Finlay et al. 1988) first occur a t  ,8 considerably higher than the 
smallest. 

Figure 3 gives c ( p )  a t  the same Ro, a, Re as figure 2 ; w = c p  is approximately linear 
in p. The wave speed, c ,  varies non-monotonically with Re. At a = 8, c ( p )  is 
qualitatively similar. 

When Ro is lowered to Ro = 0.5, and a = 6, u(p) is similar to that a t  Ro = 1.5, 
except Re;, FZ 3.ORe,. We choose a = 6 because it is near that observed experi- 
mentally by Alfredsson & Persson (1989) for this Ro. 

For the a, Re, Ro considered so far in this section, u approaches zero as p-. 0,  and 
Re& is determined by p x 1.5. For small p, positive values of u occur only when Re 
is considerably greater than Rehs. In  contrast, a t  Ro = 0.5 and a = 8, wavy 
disturbances with p+ 0 are the first to become unstable with increasing Re. Figure 
4 gives u(P) for several Re a t  a = 8, Ro = 0.5. Although p + O  is first unstable, modes 
with /? > 0 have larger positive growth rates for higher Re. Figure 5 shows u(p) for 
a larger range ofp.  The disturbance with largest positive growth rate shifts to much 
higher p when Re increases above a certain value. For some Re, there are two local 
maxima in u(p). To the author’s knowledge, this behaviour is not observed for 
oscillatory Rayleigh-Benard convection or Taylor-Couette flow with only the inner 
cylinder rotating, but does occur in curved channel flow (Finlay et al. 1988). It should 
be noted that the method we use to obtain cr yields only the largest eigenvalue. In 
fact, preliminary data obtained by solving the eigenvalue problem directly with a 
spectral tau method show that the two local maxima correspond to two different 
eigenmodes, each having a u(P)-curve similar to an inverted parabola. When only the 
maximum u between the two modes is plotted, two maxima can occur. The two 
maxima are well separated and we define p1 and p2 as the positions of the maxima 
with higher and lower p, respectively; both depend on Re, a, Ro. As shown in the 
following section, the wavy vortex flows corresponding to the two ranges of p arc 
dissimilar. We use the abbreviations WVFl and WVF2 to describe wavy vortices 
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FIGURE 5. Linear growth rate, (r, of wavy disturbances are shown as a function of /3 for Ro = 0.5, 
a = 8, and Re as follows: 0,  -, Re = 1.354ReC; 0, ----, Re = 2.032ReC; A, -.-, 
Re = 2.596Rec; +, ’ . . . . . . , Re = 3.16OReC; X ,  ---, Re = 4.515Rec. 

with p near PI and pz, respectively. With increasing Re, two-dimensional vortices first 
become unstable to WVF2 always for p+O, whereas instability to WVFl occurs first 
for p not near zero; this differences distinguishes the two modes. For Ro = 0.5, 
a = 8 ,  and increasing Re, WVF2 occurs first for p-t 0 at Re E Re:, x 1.5Rec ; WVFl 
first occurs for Re;, % 2.0Rec and ,8 w 1 .O. Finlay et al. (1988) used the terms ‘twisting ’ 
and ‘undulating’ Dean vortices to mean p1 and pz, respectively, in curved channel 
flow at = 0.975. Here, ‘undulating’ vortex flow will be used to mean WVF2, 
because of the similarity to undulating Dean vortices flow (see $4). WVFl is similar 
to twisting Dean vortex flow for some Ro but different a t  others, so ‘twisting 
vortices’ will not be used here to mean WVF1. For the Re shown in figure 5, a(pl) 
increases monotonically with increasing Re. I n  contrast, a(Pz) increases from zero a t  
Re:, to a maximum a t  some Re and then decreases with further increases in Re. We 
define Re, as the Reynolds number a t  which a(pl) = a(Pz). By interpolation, 
Re, z 2.2Rec for a = 8 ,  Ro = 0.5; Re;,, Re, and Re:, are functions of Ro and a. For 
example, a t  Ro = 1.5, Re;, increases between a = 8 and 10, but a t  Ro = 0.5, Re;, 
decreases between a = 6 and 8. If both modes become unstable with increasing Re, 
then, for the parameter range explored, Re:, <Re;,, i.e. WVF2 occurs first with 
increasing Re. For Re sufficiently greater than Re,, a(P1) % a(P,). 

The behaviour of the non-dimensional wave speed, c ,  as a function of and Re for 
a = 8 ,  Ro = 0.5 is given in figure 6. An abrupt change in c ( p )  occurs between the two 
modes. The wave speed is asymptotic to a constant for large ,i3 in the range 
considered, which is also true for twisting vortices in curved channel flow (Finlay 
et al. 1988). At Ro = 0.5, c is a relatively weak function ofRe, as in curved channel flow 
(Finlay et al. 1988) and Taylor4ouette.flow (King et al. 1984). Wave speeds for 
WVFl with a = 6, Re = 3.160Rec, Ro = 0.5 are included in figure 6 to show the small 
variation with a, especially for p > 0.5. For undulating vortices, w ( p )  is linear for 
small /3, and o+O as p-0,  as in Rayleigh-BBnard convection with stress free 
boundaries (Busse 1972). 

At Ro = 0.5, only WVFl has positive linear growth rates when a = 6, but both 
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FIQURE 6.  Wave speeds, c ,  of small-amplitude wavy disturbances to two-dimensional vortices are 
shown as a function of streamwise wavenumber, b, at Ro = 0.5, a = 8 and Re as follows: 0,  --, 
Re = 1.693ReC; 0, ---- , Re = 2.032Rec; A, ---, Re = 2.596ReC; +, . . . . * . . . ,  
Re = 3.160Re,; X ,  , Re = 4.515ReC. Data for a = 6 ,  Re = 3.160ReC, Ro = 0.5 is shown as 
a, -. Data for WVFl is to the lower right, and is not joined by lines to the data for WVF2 at 
the upper left, even though Re may be the same. 

o'2' 

0 2 4 6 8 10 

P 

FIGURE 7. Linear growth rates, u, of wavy disturbances are shown as a function of B for Ro = 0.1, 
a = 6, and Re as follows: n ,  - , Re= 1.173Re,; 0, ---- , R e=2.053ReC; A, -.-, 
Re = 4.032Rec. 

modes can be unstable a t  a = 8. Reducing the rotation rate to Ro = 0.1 with a: = 6, 
again both modes can be unstable. Figure 7 gives a(P) for several Re a t  a: = 5 ,  
Ro = 0.1. Marginal stability to wavy disturbances is determined by p+O, but modes 
with p > 0 are more unstable for Re > Re:,. By interpolation, undulating vortices 
may occur for Re >Re;, x 1.3Re,, and WVFl for Re > Re;, w 2.8Re,. The value of 
maximum growth rate for undulating vortices, a(pz), does not reach a maximum in 
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FIQURE 8. Wave speeds, c, of small-amplitude wavy disturbances to two-dimensional vortices are 
shown as a function of streamwise wavenumber, p, at Ro = 0.1, a = 6 and Re as follows: 0, -, 
R e =  1.173ReC; 0, ---- , R e = 2.053Re,; A, ---, Re = 4.032Re,. Data for WVFl at 
Re = 4.032ReC is shown by t,he data to the right, and is not joined by lines to the data for WVF2 
at the left. 

the Re-range explored, in contrast to the behaviour for Ro = 0.5, a = 8 and for 
undulating modes in curved channel flow (Finlay et al. 1988). At Ro = 0.1, PI z 4 is 
larger than p, at Ro = 0.5 or Ro = 1.5. Figure 7 ( b )  of Alfredsson & Persson (1989) 
shows flow visualization at  Ro = 0.084, Re = 4.022ReC, a w 6 that indicates wavy 
vortices having ,8 x 4. Since p z PI + pz, this is probably WVF1. 

Figure 8 gives c ( p ) ,  corresponding to a(/?) in figure 7. The comments regarding c for 
Ro = 0.5 are applicable here, except that the variation of c with a was not examined 
at  this Ro, and c(Re) varies considerably more for undulating vortices at Ro = 0.1 
(possibly because of the larger range of Re). Wave speeds for Ro = 0.1 are mostly near 
those for Ro = 0.5, but are considerably lower than at  Ro = 1.5. When non- 
dimensionalized by d 2 / v ,  instead of d / U ,  w for undulating vortices varies little with 
Ro; the same is not true for WVF1. (A similar non-dimensionalization yields a 
frequency nearly independent of Prandtl number, P, for oscillatory Rayleigh-BBnard 
convection rolls with stress free boundaries, but strongly dependent on P for rigid 
boundaries. There v is replaced by the thermal diffusivity, Busse 1985). Wave speeds 
in curved channel and Taylor-Couette flow depend strongly on 7 (Finlay et al. 1988; 
King et al. 1984). Similarly, c depends on Ro. 

Alfredsson & Persson (1989) almost certainly observed wavy vortices, with the 
waves travelling at 'about half of the undisturbed centreline velocity' (c  = 0.75). 
They do not specify the parameters for this observation, although 0.015 ,< Ro < 0.26. 
This c is lower than most values in figures 6 and 8. However, we find considerable 
variation of c with the various parameters, so this observation may be for Ro, a, Re, 
p not considered here. 

Values of ReiJRe, and Re:,/Re, are listed in table 2. ReiJRe, is nearly constant 
between Ro = 0.1 and Ro = 0.5 for a = 6, and similarly between Ro = 0.5 and 
Ro = 1.5 for a = 8. 

The value of /3 observed experimentally depends on upstream conditions, nonlinear 
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Ro a Re:,lRec Ret,/Rec 

0.1 6 1.3 2.8 
0.5 6 Kon-existent 3.0 
0.5 8 1.5 2.0 
1.5 8 "on-existent 2.0 
1.5 10 Non-existent 2.7 

TABLE 2. Values of the neutrally stable Reynolds number for onset of WVFl (ReL) and WVF2 
(Re:s) are given at various Ro and a 

mechanisms and linear growth rates. If the latter are dominant then, for Ro = 1.5 
and a = 8,10, or Ro = 0.5 and 01 = 6, only the shorter wavelength WVFl occurs, 
since undulating vortices do not have positive linear growth rates. At Ro = 0.5, 
a = 8 or Ro = 0.1, a = 6, long wavelength undulating vortex flow can occur, but at  
higher Re, WVFl has much higher linear growth rate. The small linear growth rates 
associated with undulating vortices probably make them difficult to observe 
experimentally because of long development lengths, as predicted for undulating 
vortices in curved channel flow (Finlay et al. 1988). As already mentioned, Alfredsson 
& Persson (1989) probably observed WVF1. At fixed Re = 4.022ReC, and sufficiently 
low Ro this is the only type of waviness they observe. With increasing Ro, they 
observe long-wavelength wavy fluctuations. These are probably not undulating 
vortices, since this section indicates that these should become more difficult to 
observe a t  higher Ro. 

4. Simulation of nonlinear wavy vortices 
In this section we examine fully developed, three-dimensional solutions of the 

Navier-Stokes equations for Re > Re;, or Re > Re;,. Channels with short streamwise 
lengths may not reach these states. Unless otherwise specified, all flows presented in 
this section have /3 near either p1 or pz (i.e. near the most unstable p of 53), and a near 
that observed by Alfredsson & Persson (1989). Most of the wavy vortices in this 
section were obtained using the initial conditions mentioned in $3, but with the 
initial perturbation to the first streamwise mode having larger amplitude (< 1 YO U ) .  
Several runs were repeated using instead low-amplitude (< 0.001 % U )  random noise 
as initial conditions. Both initial conditions always yielded the same wavy vortex 
solution. 

4.1,  General features 

Fully developed wavy vortices are travelling waves in which the flow pattern travels 
with uniform velocity c .  This is similar to the behaviour of wavy Taylor vortex flow, 
wavy Dean vortex flow, and oscillatory Rayleigh-Be'nard convection rolls. 
Specifically, the velocity satisfies the spatio-temporal property of a travelling wave 
(Rand 1982): 

(4.1) 

Setting At = 0 in (4.1) implies streamwise periodicity with wavenumber p;  setting 
At = a x / ( @ )  shows that the travelling wave has temporal periodicity with frequency 
w = c p .  Values of w for several nonlinear wavy rotating channel vortices are given in 

v(  (x + cAt) mod 27r/p, y, z ,  t + At) = v(x,  y, z ,  t ) .  
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Ro RelRe, a 

0.084 4.022 6 
0.084 4.022 8 
0.1 2.053 6 
0.5 1.693 8 
0.5 2.596 8 
0.5 3.160 6 
0.5 3.612 6 
1.5 3.277 10 
1.5 2.348 8 

B 
4.0 
4.0 
0.8 
0.2 
1.5 
1.5 
1.5 
1.5 
1.5 

Mode 

WVFl (twisting) 
WVFl (twisting) 

WVF2 (undulating) 
WVF2 (undulating) 

WVFl 
WVF 1 
WVFl 
WVF 1 
WVFl 

W 

4.35 
4.3 
1 .oo 
0.26 
1.30 
1.38 
1.31 
0.9 
1 .o 

Ap Ap (2D flow) 

0.46462 
0.59598 0.44976 
0.231 85 0.241 85 
0.15998 0.22386 
0.24598 0.2732 
0.231 26 0.206 68 
0.2809 
0.11306 0.091043 
0.069 217 

TABLE 3. Frequencies, w (obtained using temporal spectra), and values of Ap from simulation 
are given for nonlinear wavy vortices. Values of Ap are also given for two-dimensional vortices 
(B = 0) at each Ro, Re, a, except when the two-dimensional vortices are unstable to vortex doubling 

table 3. These values are all within 7 % of those obtained for small-amplitude waves 
in $3. 

We simulate temporal power spectra obtained by a probe that moves at constant 
velocity, cp, in the streamwise direction. In agreement with (4.1), such 'flying hot 
wire ' spectra have o shifted by pc, ; the results show that all frequencies with non- 
zero energy are integer multiples of the shifted fundamental frequency. This 
demonstrates that wavy rotating channel vortices are travelling waves. Fully 
developed two-dimensional vortices in rotating channel flow can bifurcate to two 
different travelling wave regimes with increasing Re. 

Wavy vortices may have shift-and-reflect symmetry (Marcus 1984) : 

where z = 0 is the time-averaged location of an upflow or downflow boundary. 
Although this symmetry was not enforced, all wavy vortices in rotating channel flow 
satisfy (4.2). Preliminary runs at  higher Re than presented here indicate that 
asymmetric flows can occur in the transitions leading to chaos. 

Spatial energy spectra for wavy rotating channel vortices decay exponentially 
with increasing Fourier wavenumber kz or k, (cf. Finlay 1989 for more on this for 
two-dimensional vortices). This behaviour occurs for wavy Taylor vortices (Marcus 
1984), wavy Dean vortices (Finlay et al. 1988) and oscillatory Rayleigh-BBnard 
convection rolls (Curry et aE. 1984). The adequacy of our spatial resolution is 
monitored by observing whether such exponential behaviour occurs up to the 
maximum wavenumber resolved (19 x 33 x 19 modes in x, y, z are used for all runs in 
this section). 

Between vortices the flow is directed mostly toward positive or negative y7 i.e. 
these are upflow or downflow regions. The upflow region has higher Ivy( than the 
downflow region. For rotating Poiseuille flow, the lower wall at y = -$ has 
higher pressure and the flow near it (y < 0) is inviscidly unstable ; the opposite is true 
of the upper wall. Larger lwyl thus occurs in the upflow regions where flow is away 
from the higher pressure, inviscidly unstable wall. Similarly, for curved channel 
vortices, radial velocities are highest in the regions with radially inward flow (inflow) 

8 FLM 216 
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away from the higher pressure, inviscidly unstable outer wall (Finlay et al. 1988). In 
contrast, Taylor vortices have strongest radial flow towards the higher pressure outer 
wall (Marcus 1984). 

A measure of the strength of the vortices is the pressure gradient parameter Ap, 
defined as 

where ap/ax is the streamwise pressure gradient, $/ax is the value of ap/ax averaged 
over the computational box, and aP/ax  is the streamwise pressure gradient for 
Poiseuille flow. The quantity Ap plays a role similar to that of the Nusselt number 
in Rayleigh-B6nard convection, and the non-dimensional torque in Taylor-Couette 
flow. Values of Ap for several nonlinear wavy vortex flows and corresponding two- 
dimensional vortices are given in table 3. For the two cases of undulating vortices Ap 
is lower than for (unstable) two-dimensional vortices a t  the same Re, a, Ro. This is 
similar to wavy Taylor vortices and undulating Dean vortices, which have lower 
torque and Ap,  respectively, than the corresponding axisymmetric vortex flow. In 
contrast, all but one of the WVFl (a  = 8, Re = 2.596Re,, p = 1.5, Ro = 0.5) have 
higher Ap than the corresponding unstable two-dimensional vortex flow. Twisting 
Dean vortices also cause A p  to be higher. 

By their absence or presence, the following few qualitative features capture the 
essential temporal and streamwise variation of wavy vortex flows (because the flows 
are due to fully developed travelling waves, temporal and streamwise variation are 
equivalent). If significant variations in vortex strength occur, one vortex is strongest 
when the other is weakest. The vortices may oscillate back and forth in the spanwise 
direction ; this will be referred to as sideslipping. Independent of this motion, vortex 
rocking will be said to occur if the line (in a (y, 2)-plane) joining two vortex centres 
across an upflow region oscillates from positive to negative slope. Finally, the upflow 
and downflow regions may have significant and varying v,, causing directional 
changes of the upflow and downflow regions. 

Rocking, sideslipping and directional changes in the upflow region are observed to 
occur together in the following patterns. For all wavy vortices, large sideslipping 
motion occurs only in the direction opposite to the spanwise velocities in the upflow 
region. Wavy vortices having large maximum sideslip ( > 0.3/\), and directional 
changes of the upflow region that are approximately in phase with rocking (i.e. in a 
(y, 2)-plane, the upflow region is approximately perpendicular to the line joining two 
vortex centres), with no other outstanding features, will be called undulating 
vortices. All WVF2 are undulating vortices. No WVFl is an undulating vortex flow. 
For these reasons, WVF2 and undulating vortex flow will be used synonymously. 
Wavy vortices that sideslip only a little (< O.lh), but have the latter property of 
undulating vortices, and no other outstanding features, will be called twisting 
vortices. All wavy vortices observed by Finlay et al. (1988) in curved channel flow 
were undulating or twisting (for curved channel flow, ‘upflow’ is replaced by 
‘inflow’). For WVFl, vortex rocking is characterized by two features: (1) if one 
vortex in a pair is considerably stronger than the other, then the weak vortex moves 
rapidly to the y = -$ wall soon after it is weakest ; (2) significant motion of a vortex 
centre toward the y = ++ wall occurs a t  locations other than where the vortex is 
weakest. 

With these features in mind, we now examine some wavy vortex velocity fields. 
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i =  1 2 3 

1 
5 .,:.=.=.r r E : E ?  I : i 5 i i  ................ ................ 

FIQURE 9. WVFl (twisting vortices) at Ro = 0.084, Re = 4.022ReC, a = 6 ,  B = 4 is projected onto 

Plots for 6 < i Q 10 are a reflection about z = 0 of the plot at i-5. 
(y, 2)-planes for z = (2rr/B) ( i / l O ) ,  i = 0,1,2,  .... 5. All six plots have axes as given in the i = 4 plot. 

4.2.  Wavy vortices for small Ro 
Shown in figure 9 are arrow plots of the cross-flow velocities for fully developed 
WVFl with Ro = 0.084, Re = 4.022ReC, a = 6 ,  p = 4. These are approximately the 
same Ro,Re, a, p as figure 7 (b )  of Alfredsson & Persson (1989). The plots represent the 
cross-flow velocities for a sequence of (y,z)-planes. The streamwise flow is 
perpendicular to and into the plane of the plots. Only half a streamwise wavelength 
is shown, since the other half of the sequence is obtained from the shift-and-reflect 
property (4.2). All vector plots herein are drawn with the average spanwise location 
of the upflow region as midplane. For visual clarity, not all grid-point velocities are 
shown. Since the flow is a travelling wave, figure 9 is equivalent to a temporal 
sequence of the cross-flow velocities a t  one streamwise location. This flow has the 
features of twisting vortices and bears remarkable resemblance to twisting Dean 
vortices shown in figure 16 of Finlay et al. (1988). (The outer curved channel wall 
corresponds to the y = -4 wall here, so each plot must be turned upside down to 
match figure 16 there.) Using a = 8 a t  the same Re,Ro,p yields a flow that is 
qualitatively unchanged from figure 9. The flow observed by Alfredsson & Persson 
(1989) at this Re, Ro is probably a WVFl having the qualitative features of twisting 
vortices mentioned in $4.1. 

Arrow plots of the cross-flow velocities for undulating vortices with Ro = 0.1, 
Re = 2.053ReC, a = 6 ,  p = 0.8 are shown in figure 10. For the same reasons as figure 9, 
only half a streamwise wavelength is shown. This flow is very similar to undulating 
Dean vortices (figure 15 of Finlay et al. 1988), and wavy Taylor vortices (figure 6 of 
Marcus 1984) ; all share the qualitative features mentioned previously for undulating 
vortices. 
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FIQURE 10. WVF2 (undulating vortices) at Ro = 0.1, Re = 2.053ReC, a = 6, p = 0.8 is projected 
onto (y, 2)-planes. See the caption of figure 9 for more explanation. 
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FIQURE 11 .  WVFl at Ro = 0.5, Re = 3.160ReC, a = 6 ,  p = 1.5 is projected onto (y,z)-Planes. 
See the caption of figure 9 for more explanation. 
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4 5: 

FIGURE 12. WVFl at Ro = 0.5, Re = 2.596ReC, a = 8,  B = 1.5 is projected onto (y, z)-planes. 
See the caption of figure 9 for more explanation. 

4.3. Wavy vortices at Ro = 0.5 
At Ro = 0.5 and a = 6, $3 indicates that undulating vortices are not possible. WVF1 
with Re = 3.160Rec, p = 1.5 at this a, Ro is shown in figure 11. (Arrows of the same 
length in figures 9, 10 and 11 have non-dimensional velocity magnitudes of the same 
value.) The directional changes of velocity in the upflow region are considerably 
smaller than for any other wavy vortices examined so far. The vortices rock with 
little sideslipping, like twisting vortex flow, but the directional changes in the upflow 
jet lag considerably behind the rocking, so the term 'twisting vortices' cannot be 
applied as defined previously. 

WVFl with a = 8 ,  Re = 2.596Rec, and the same R o , p  as figure 11, is shown in 
figure 12. This a is higher than observed at this Ro by Alfredsson & Persson (1989). 
Figure 12 shows the only WVFl found with large sideslipping. Large sideslipping in 
conjunction with directional changes of the upflow region that are in phase with 
vortex rocking would make this flow like undulating vortices ; however, one of the 
vortices disappears once per period, which is unlike undulating vortex flow, or any 
other wavy vortex flow. This flow is also the only WVFl which has lower Ap than 
the corresponding two-dimensional vortex flow. 

At  Ro = 0.5, undulating vortices are possible at a = 8, although this a is greater 
than any a observed by Alfredsson & Persson (1989). For a = 8 ,  Ro = 0.5, and 
Re = 1.693ReC, p = 0.2, vortex rocking is less pronounced than other undulating 
vortices, but the flow is similar to that in figure 10. 
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i =  1 
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................ 

6 

FIGURE 13. WVFl at Ro = 1.5, Re = 2.348ReC, a = 8 ,  B = 1.5 is projected onto (y,z)-planes. 
See the caption of figure 9 for more explanation. 

4.4. Wavy vortices at Ro = 1.5 
At Ro = 1.5, $3 indicates only WVFl is possible. Experimental data on vortex 
spacing is unavailable a t  such a high rotation rate, so we choose a near a, = 8.13. 
WVFl with a = 8, Re = 2.348Rec, p = 1.5, is shown in figure 13. There is little vortex 
rocking, sideslipping, or variation in vortex strength. Unlike either the twisting or 
undulating patterns, the changes of the v, velocities in the upflow region are 180' out 
of phase with rocking and are very small. 

Wavy vortices at the same Ro, p, but u = 10, Re = 3.277Rec are shown in figure 14. 
The flow is different again. Considerable vortex rocking occurs, with more sideslip 
(maximum sideslip is z 0.4h) than twisting vortices. Unlike either twisting or 
undulating patterns, significant phase difference exists between vortex rocking and 
changes in upflow direction. 

At Ro = 1.5 the vortices are located closer to the y = - t  wall than a t  lower Ro. 
Significant vy ,  v, velocities exist only for y < 0. For y > 0 the secondary flow is weak, 
but quite complicated. 

Wavy vortex flows examined at Ro = 1.5 resemble neither undulating nor twisting 
vortices. 
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4 

L 3 

FIQURE 14. WVFl at Ro = 1.5, Re = 3.277ReC, a = 10, = 1.5 is projected onto (y, z)-planes. 
See the caption of figure 9 for more explanation. 

5. Summary 
Three-dimensional simulations were used to study wavy vortices in rotating 

channel flow. Linear stability of two-dimensional vortices to wavy disturbances 
shows that two wavy modes are possible : WVFl and WVF2. WVFl occurs for all Ro 
examined and for Re > Re;,, where 2 < Re;,/Re, < 3 for 0.1 < Ro < 1.5 (Re, is the 
critical Re for instability of rotating plane Poiseuille flow to two-dimensional 
vortices). Regular oscillations observed experimentally by Alfredsson & Persson 
(1989) were likely due to WVF1. WVF2 is possible only at lower rotation rates and 
Re > Reg,, where ReE,/Re, x 1.3-1.5. At Ro where both modes occur, WVF2 occurs 
first with increasing Re, i.e. Reg, < Re;,, but at sufficiently high Re, WVFl has much 
higher linear growth rate. Small-amplitude wavy disturbances have wave speeds 
that are generally not weakly dependent on Re, a, B or Ro. Nonlinear wavy vortices 
are travelling waves with wave speeds near those obtained from linear stability 
analysis. WVFl and WVF2 satisfy shift-and-reflect symmetry about their mean 
upflow and downflow planes. Wavy vortices vary considerably in appearance with 
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Ro and a, but can be characterized qualitatively by the following features : rocking, 
sideslipping, and regular changes in the direction of up flow regions between vortices. 
In  these features, WVFI varies greatly with Ro and a, but is like twisting Dean 
vortex flow (Finlay et al. 1988) for low Ro. In contrast, WVF2 varies far less in 
qualitative appearance and has the features of undulating Dean vortices (Finlay 
et al. 1988), and wavy Taylor vortices (Marcus 1984). Based on linear growth rates, 
WVFI should dominate experimentally. 

The author gratefully acknowledges the CPU time supplied by Cray Canada Inc. 
and the financial support of NSERC. 
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